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X-ray Crystallography

2-lecture Introduction
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Agenda
Goals
 Not to Propagate 

crystallographers…
 Intelligent reader / user

http://xtal.ohsu.edu/teachin
g/conj668/X-
ray%20Crystallography.pdf

Topics
 Why crystals, X-rays?
 Crystal growth
 Diffraction – why, how?
 Phase problem – solving.
 Density  Atomic model
 Refinement
 Accuracy
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Why Structures? Why Crystallography?

Coat-hanger – frame hypotheses
 Basic biochemistry; rational design…
 Nature / Science / Cell

Structural database – 109 119,000 (May 201516):
 106,000 116,453 crystal structures
 11,400 11,817 NMR
 1050 1514 EM
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Bibliography / Resources

 McPherson, A. (2009) (solid introduction)
 Introduction to Macromolecular Crystallography, 

Wiley-Liss, Hoboken, NJ; 2nd Ed., ISBN 978-
0470185902 ($77.50)

 Drenth, J. (2010) (more technical)
 Principles of protein x-ray crystallography. New 

York, Springer, 3rd Ed., ISBN 978-1441922106
($84.95)

 Rupp, B. (2010) (comprehensive text; reference)
 Biomolecular Crystallography, Garland, New York, 

ISBN 978-0815340812 ($106)
 Rhodes, G. (2010) (less technical)
 Crystallography made Crystal Clear, Academic 

Press, 3rd Ed., ISBN 978-0125870733 ($64)
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Chapter 2

X-rays & their interactions with 
Crystalline materials
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Why X-rays?  
 X-rays ~ Electro-magnetic radiation ~ Light
 Scattered in all directions by atoms. 
 Intensity (direction) = sum (interference) of scattering. 
 Sum depends on size & path length ~ position of each 

atom, i.e. structure! 

Small atom 1:
Some X-rays scattered

Big atom 2:
More X-rays scattered

Detect the sum

A


 – path length
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Why X-rays? - 2  
 Sum most sensitive to structure when
 Path length difference = O(wavelength)

 (Visible light:
 Much longer wavelength
 Insensitive to atomic-level structure.)

Detect the sum

A


 – path length
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Diffraction - Crystallography in a nutshell  
 No X-ray lenses
 Computationally mimic, by summing scattered waves. 
 (Fourier transform)

 Measure intensity in each direction.

 Amplitudes not enough 
 Phases – synchronization of waves
 How they line up, how far peaks lag behind each other.
 Can’t be measured directly – “Phase Problem” Challenge.
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Image Electron density not atomic structure
 What is scattering the X-rays? 

 Atoms
 Not nuclei, but electron clouds

 Image electron density – infer nuclear positions
 Exptl. error in density can  difficult interpretation.
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Conventional sources of radiation
 e acceleration 

X-rays. 
Conventional 

source: e from 
filament. 

Accelerated from 
cathode  anode 
target where 
stopped.

High voltage 
filament

Vacuum

Water cooling

Copper target

Be window

X-rays
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Synchrotrons.  
 e or e+ traveling round circle 

(> 50m). 
Expensive shared facilities.
High intensity
Variable wavelength  Phases
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Why crystals?
Electrons scatter x-rays photons 

inefficiently (1 in 1016)
Dataset from one molecule ~ 100 

trillion yrs
Solutions – average of all 

orientations
Crystals are arrays of ~ 1015

molecules with same orientation.

a

c

b




Con668 Molecular Biophysics - Crystallography 5/20/2017

(c) Michael S. Chapman 4

5/20/2017 CON668: X-ray crystallography  (c) M.S.Chapman 13

Lattice Planes – rationale for diffraction directions

 Plane (Line) through multiple grid points. 
 Parallel planes (lines) through every grid point.

 Infinitely many ways – what’s the point?
Bragg: diffraction in directions of “reflections” 

from these imaginary planes
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Bragg's Law
 Consider || planes P1, P2, ... Pj, Pj+1, ... PN.
 Path differences:  {P2 - P1} = {Pj+1 - Pj} = 2d sin

 planes scatter much larger when  "in phase".
 ... path difference = 2dsin = n;  (n=1)
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(De Moivre: 
Phase is direction in 
complex plane.)
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Implications of Bragg’s Law

 Particular directions, 
diffraction strong
 Elsewhere, ~ zero
 spots a.k.a. reflections

 Spots positions 
geometry of crystal lattice

 Intensities  amplitudes 
of scattered waves 
 “Sum” (Fourier 

transform)
 electron density
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Bragg’s Law  Resolution  

 Let Dmax be distance of furthest spot from direct beam.
 Let dmin be its interplanar spacing. 
 dmin = (2sin max) = /2sin{½tan-1(Dmax/l)}
 dmin is de facto resolution limit. 
 Smallest spacing between objects that can be resolved

 Note dmin refection at θmax, i.e. farthest from beam.

l

crystal

film

D
2
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Chapter 3: Crystallization

Empirical w/ some rationale.
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What’s important to crystal quality? 
1. Purity
2. Purity
3. Purity

97 – 99+ % purity – no other bands on gels.
4. Beyond purity - Homogeneity 
 Post-translational modification
 Phosphorylation; glycosylation, cleavage…

 Conformation
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2 steps of Crystallization:
2: Growth.

Thermodynamically favorable
Each added molecule makes many contacts

Slow down – want few imperfections
Lowest concentration possible

1: Nucleation - first aggregation.
Thermodynamically unfavorable

Only one contact when 1st 2 molecules collide
High concentration  favorable free energy
Too high, many nuclei  many small crystals
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Crystallization from supersatured solutions
Supersaturation: concentration > solubility
 If at equilibrium  solid
 But not at equilibrium

Crystallization methods:
 Start w/ supersaturated solution
 Controlled equilibration
 Solution  Solid phase.

Solid: 3D crystal, liquid crystal, precipitate…
 Precipitate is solid that is not ordered.
 Crystals: need controlled equilibration.
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Supersaturation
Phase diagrams

Precipitatant concentration (salt, PEG etc.)

Pr
ot
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n 
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n

Under-saturation
(protein remains soluble; crystals dissolve)

Nucleation zone

Precipitation zone

Solubility 
curve

Metastable zone
Crystals grow, but

Nuclei form only 
infinitely slowly
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Course of Crystallization Experiment

[Precipitatant]

Pr
ot

ei
n 
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nc
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tr
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Nucleation

Precipitation
Metastable 

Start w/ 
soluble protein 
(undersaturated 
or metastable)

Nucleates 
here

Crystal grows
Sequesters protein

[protein] drops

Crystal stops growing @ 
solubility curve 

Expt incr. [protein], [precipitant]
Xtl grows again, until hits curve

Repeats as follows solubility curve
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What affects Phase diagrams? 

 Type of precipitant is most critical
 Type of ion affects solubility – try many

 Many other variables – pH, Temperature, Additives…
 Phase diagrams usually unknown
 Lots of combinations to test empirically

1 2 M

Ly
so

zy
m

e 
(m

g/
m

l)

1

10

100

Solubility KSCN

Precipitation
KSCN

Solubility NaCl

Precipitation
NaCl
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Principles of Vapor Diffusion

Sealed container

Protein 
+ precipiant soln.
Low osmotic pressure

Reservoir of precipitant 
at high osmotic pressure

Vapor phase

H2O H2O
Dynamic equilibrium
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24-well culture plate
 Test many conditions

Microscope cover slip used as cap
 Sealed on w/ vacuum grease

 Protein drop hangs from coverslip
 20 L down to 75 nL

Advantages
 Small scale
 Approaches equilibrium slowly
 Crystals seen thro’ cover-slip w/ microscope

Hanging drops – most popular Crystallization depends on…
1. Purity
2. Type of precipitant
3. Concentration of precipitant
4. pH
5. Protein concentration
6. Temperature
7. Ionic strength
8. Additives at low concentration

1. Ions, esp. divalent
2. Ligands, coenzymes
3. Detergents (membrane proteins)
4. Organic co-precipitants
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Concluding comments on crystallization
Many things to screen
 Thousands of combinations – sparse matrix
 Automation; pre-formulated solutions

 Fine optimization of several leads
 Grid screen, concentrations, pH…

 Rate-limiting in structure determination
Start w/ a good book :
 My favorite: Ducruix, A. and R. Giegé, Eds. 

(1999). Crystallization of Nucleic Acids and 
Proteins. 2nd Ed., The Practical Approach Series. 
Oxford Univ Press.
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Chapter 4: Diffraction Data Collection

Selected topics
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Data Collection Instrumentation

Crystal here 
(honestly!)

Motor to 
rotate crystal

Cryostream

Detector 
(film)

Video 
microscope

Thanks to Cornell High 
Energy Synchrotron Source 5/20/2017
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Crystal Mounting

Cryo-data collection
 Drop of frozen mother 

liquor
 Held in loop of fiber

Cold N2
stream

Radiation damage
 Ionizing radiation 

roaming free radicals
 Changing covalent structure

 Reduced diffusion/damage 
at 100 K
 Flash-freezing
 Cryo-protectant

5/20/2017 CON668: X-ray crystallography  (c) M.S.Chapman 31

Chapter 5: Diffraction Theory

Fourier Transforms etc..
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Diffraction as electromagnetic waves  
 Sum given by: F(r*) = N

j=1 fat,j(Z, r*, U) exp 2i r*∙rj
 |F| is amplitude of wave in direction given by r* vector. 
 N atoms, each scattering w/ amplitude of fat

 Note: i = sqrt(-1); exp ix = cos x + isin x
 i.e. short-hand for sinusoidal (electromagnetic) wave

 How the waves add depends on rj, positions of atoms

Detect the sum

A


 – path length
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Scattering by elements of electron density
 Prior slide: F(r*) = N

j=1 fat,j(Z, r*, U) exp 2i r*∙rj
 Now integrate over elements of electron density,  , 

instead of summing over atom centers: 
 F(r*) = V (r)exp 2ir*∙r dr (Fourier integral)

 For repeating function, integral replaced by discrete sum.
 Structure determination: 
 measure amplitude |F|
 Mathematically compute inverse FT electron density: 

 (r) = T-1[F(r*)] = V* V*F(r*)exp -2i r*∙rdr*
 Challenge:  F not just amplitude, but direction (phase)
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Fourier Series  
FT can approx. 

“any” function.
Series of pre-

defined λ
(harmonics).

Waves defined by 
amplitude and 
phase.

Fourier coeff. (F
or {|F|, φ}) given 
by FT of function.

High order terms 
 detail
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Representations.  
Amplitude (A) varies as 

cosine of distance from 
origin (O).  

 Phase ( or ) is measured
 origin  +ve peak
 angle from -axis 

(anticlockwise)
Wave often represented on 

Argand diagram as a 
complex number (“vector”)
 Amplitude  length
 Phase  direction

i



R






O




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Chapter 5: Phase Problem

Solving it – by hook or by crook…
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Solving the phase problem – the essence.  
 Task:  For each of ~10,000 

reflections (spots):  
 Determine direction of F.
 Calculate from structure

 F(r*) = N
j=1 fat,jexp 2i r*∙rj

 Note LHS “vector” w/ direction
 Seems like cheating! - But basis of:
 Molecular replacement

 Similar structure
 Isomorphous replacement

 Heavy atom – partial structure

i



R






O




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Molecular replacement – related structure.  
 Want |FP|, φP for new structure
 Know |FC|, φC calculated from related 

structure
 Map: combine |FP|, φC

 Map is hybrid of 2 structures – hope 
to see how unknown structure differs

 Build atomic model
 Iterate towards unknown structure
 Calculate new |FC2|, φC2

i

R

i

R

5/20/2017 CON668: X-ray crystallography  (c) M.S.Chapman 39

How does phase combination work?

FT

FT manx

|F|Felix

FT

Monochrome, ‘cos 
missing phases

Model

Diffraction

Illustrations thanks 
to Kevin Cowtan
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Molecular Replacement – not so straightforward…
 Phasing model (related structure) must > ~50% the same.
 Calculation of |FC|, φC phasing model to be oriented & 

positioned as in the unknown structure
 Must search over all possibilities for consistency w/ 

diffraction pattern.
 “Rotation function”  3 orientational parameters
 “Translation function”  3 positional parameters
 Often many solutions that look equally good.
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Potential bias towards phasing model
 Suppose we collected diffraction for a cat
 But thought that it was a duck…

FT

FT duck

|F|Felix

FTModel

Diffraction
•Importance of 
phases.

•More commonly, 
challenge in 
recognizing parts of 
model incorrect.

Molecular Replacement

Advantages
 Quick: hours vs. months
 70% structures

Disadvantages
 Req. similar structure

 Not new folds
 Determination of 

rotation / translation 
sometimes challenging

 Occasionally  wrong 
structure
 Care / high standards

5/20/2017 CON668: X-ray crystallography  (c) M.S.Chapman 42

5/20/2017 CON668: X-ray crystallography  (c) M.S.Chapman 43

Isomorphous Replacement - overview
1. Collect “native” data set: FP
2. Attach heavy atom(s) to protein
3. Collect “derivative” data set: FPH
4. Determine heavy atom positions from 

difference (FPH – FP)
 “Small molecule methods”
 Now can calculate FH (vector)

5. Vector relationship: FPH = FP + FH.
6. Triangulation even w/o PH, P.
7. Solve for P.
8. Approximate  poor maps

P -FH
H

FP

FPH
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Challenge is the Heavy Metals
 Need just a few added atoms
 Need to be able to solve as small molecule

 To detect, need high atomic number: f2 = iZ2.
 Hg, Pt, Pb, Au, U…
 > 200 reagents, e.g.:  K2PtCl4, HgAc2, 

p-chloromurcuribenzoic acid, UO2(NO3)2, PbAc2
 React with Cys, Lys, Glu etc. – if accessible in structure
 Empirical search can take months – many attempts:
 Many reagents denature proteins.
 Non-isomorphous protein structure.
 Determination of heavy atom locations challenging.



Con668 Molecular Biophysics - Crystallography 5/20/2017

(c) Michael S. Chapman 12

Isomorphous replacement  Anomalous diffraction
Analogous, but change wavelength not atoms
Tune λ for resonance w/ few atoms (or not)
 Near absorption edge
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fanomalous

R

i

f

Free electron 
scattering 

(non anomalous)

f

Effect of bound 
electrons

f”
“Imaginary” 
component 
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Parallels: 
Anomalous 
diffraction 

cf. MIR
Small perturbation of diffraction
 Triangulate to determine phases

Need handful atoms w/ larger effect than C, N, O
 Heavy metal OK
 Indigenous atoms usually enough & isomorphous
 SeMet expressed protein; transition metallo-protein
 Modest signal requires accurate data

 Processing like MIR using 3 well-chosen λ.
 Triangulation, or more sophisticated statistical analysis

fanomalous

R

i

f

Free electron 
scattering 

(non anomalous)


f

Effect of bound 
electrons

f”
“Imaginary” 
component 
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Chapter 6: Phase refinement

Phase refinement – improves map before 
building model.

Atomic refinement – improves model
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Role of Phase Refinement

Overview
 With > 60° phase errors, maps 

are often not interpretable.
 Refine phases using general 

properties of map.
 Cycled iterations:

 “Improve map” w/ constraints
 Phases from map + exptl. |F|

 Can make all the difference

Common constraints
 Solvent-flattening

 Solvent regions filled w/ 
mobile molecules 
featureless

 Symmetry-averaging
 Regions of identical density

 Others, less common
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Chapter 7: Model building

Crystallography  Map
Structures from interpretation
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Role of Model-building
Refinement is a semi-automated process for 

improving atomic models.
Model-building is needed:
1. To start refinement
2. To escape a rut during refinement
Auto-tracing of backbone is only 75% successful
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1: Tracing the Backbone
Define approximate C positions
 Every 3.5 Å
 Near side-chain bulges

Searching databases can help

AAV3B, 3Å
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(2) Building structure w/ 
interactive modeling

Choice of programs 
Display maps
Overlay / manipulate models
 Move fragments
 Rotate dihedrals

Search for database 
fragments
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(3) Adjustments to Conformation
 Poor resolution
 2 conformations might fit

Refinement might converge 
on worse
 Depending on starting 

structure
May need help to switch
 2 rotation makes fit 

worse before better
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Chapter 8: Atomic Refinement

& Quality Assessment
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Refinement
 Adjustment of atom positions to optimize
 Fit to the Experimental Data
 Agreement w/ known stereochemistry

 Real-space – intuitive - minimize 

 x(o,x – c,x)2 + rwL,r(Lr - L)2.
 Fit to density over map grid points, x.
 Deviation fr. stereochem. ideals, L.

 Weighted (w) by usual variance from ideal.
 Conventional (reciprocal space): minimize 

 h(|Fo,h| – |Fc,h|)2 + rwL,r(Lr - L)2

 Fit to diffraction amplitudes 
 - No (inaccurate) phases
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Need for Stereochemical 
Restraints/Constraints

Diffraction experiments yield insufficient data to 
refine unrestrained individual atoms

Typical structure
 10,000 diffraction data points

Atomic parameters
 3,000 atoms x {x,y,z,B} = 12,000 parameters

Under-determined – no unique answer
With experimental error need: 
 # data points >> # parameters
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Restraints improve Data:Parameter ratio

Restraints
 Penalty for deviation: Σ(Lr - L)2

 Like adding new data: wΣ(|Fo,h| – |Fc,h|)2 + Σ(Lr - L)2

 Many – 32 in phenyl ring example
 7 bond lengths
 18 bond angles
 6 torsion angles
 1 planarity
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Ways that Restraints can be Specified
 Explicit geometry, e.g. Program TNT:

 rwL,r(Lr - L)2 + s (s - )2 + sw,n(ds - d)2 + …
 Empirical energy function, e.g. CNS, X-plor, Phenix
 rkL,r(Lr-L)2 + sk,s(s-)2 + nkNB,n(A/d11

n–B/d5
n)2 + …

 Similar functional form: k vs. w
 Similar to Molecular Mechanics eg. CHARMM, Amber

 Especially if cast fit to data as another “energy” term:
 Exray = h(|Fo,h| – |Fc,h|)2 (others possible)
 Then minimize: Exray + rkL,r(Lr-L)2 + sk,s(s-)2 + …
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Refinement Convergence & Local Minima
G = global optimum
 L  = local minimum, perhaps w/:
 Fit to data < perfect
 Stereochemistry < perfect

Example: Leucine side chain:
 Rotation about 2 needed
Worse (M) before better

Gradient descent
 S to L
 Never uphill through M to G

 “Manual” remodeling or 
Simulated Annealing refinement

U

L M G

S
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Molecular Dynamics to shake model up
Atoms have velocities (as @ high temperature)
Kinetic energy can convert to 

potential energy (U)
Can overcome barrier to 

find global minimum
Barrier hopping depends on 

simulated temperature
 Start high
 Slowly lower
 Hope settles in global minimum

Reduces “manual” rebuilding, not eliminate
Typically 3 rounds of refinement & rebuilding

U

U
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Assessment in the absence of error bars…
 R-factors:  R = h||Fo| - k|Fc|| / h|Fo|
 0.59 (59%)  - randomly placed atoms
 0% – perfect – never!

 Un-modeled solvent, disorder etc..
 Expected values
 0.35 – 0.50 (unrefined) – progressing  structure
 0.35 – 0.50 (refined) – wrong structure
 0.25 – 0.3 (refined) – mostly correct, 10-20% wrong
 0.20 – 0.25 – at most a few local problems

 Mis-assigned sequence…
 0.15 – 0.20 – great model

 Small differentials easily papered over…
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R-factors & potential for over-fitting
R= h||Fo| - k|Fc|| / h|Fo|
Conventional R-factor lowered by over-fitting:
 Excessive model freedom for # data points
 Insufficient weight on good stereochemistry
 Excessive model parameters – eg. solvent 

positions in low resolution refinement
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R-factor – Goodness of Fit

Analogy – fitting line to data…
R-factor: quantify fit
 Like regression coefficient

Sum of distances: 
 Data to model
 “Model” is straight line
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Improving R (Goodness of Fit)

1) Improve the 
model (change 

the line)

2) Make model more flexible:
a) Add parameters: 

y = ax + c  y = ax²+ bx + c
b) Adding H2O, Bs etc.

c) Relaxing stereochemistry

3) Discard data
Easier to fit, but worse model
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Cross-validated “free”-R-factors
Set aside ~ 5-10% data – not used in refinement
Only used to assess quality of model
 Calculate Rfree against only this data

As data not used in refinement
 Independent indicator of model quality
 Not improved by excessive model freedom

 (1 to 5% Higher than conventional R-factor)
Rfree < 30% means structure approx. correct
Cross-validated Rfree is single most important 

quality indicator.
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Stereochemical measures of quality
 R-factors – quality of entire structure 
 local problems not highlighted

 Stereochemistry used to measure local 
quality

 Premise: restrained refinement balances 
fit-to-data vs. stereochemical ideality
 Sites of poor fit often have poor 

stereochemistry
 As refinement struggles to improve fit

 Programs: Procheck; MolProbity.
 Unrestrained geometry is most sensitive
  (Ramachandran) plots popular
 Identify residues outside the usual 

regions
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Precision of well-refined structures
RMS coordinate errors can be calculated from R-

factors w/ Luzzatti plot or σA analysis
Values depend on
 Resolution of refinement
 Better than resolution, because refinement 

also incorporates stereochemical information
Values to hope for
 Refinement resolution <|r|2>
 3 Å 0.5 Å
 2 Å 0.2 Å
 Better than 1 Å 0.05 Å
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The End

http://xtal.ohsu.edu/teaching/con668/X-ray%20Crystallography.pdf


