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MODEL-BUILDING
Part I – Mostly to be replaced by practical
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Role
An electron density map is 
the direct product of a 
crystallographic experiment
An atomic model is required 
to understand the chemical 
implications
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Here model fit into the 
electron density

“Manual”
computer-assisted

Need only be approximate
Adjusted later- refinement

Tools at one’s disposal
Break molecule into fragments
Move fragments as rigid bodies

Translate, Rotate
Change rotamer
Real-space refinement

Geometry regularization
R   f  f i
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Restores geometry after fragmenting
“Refinement”, but not really
Bond lengths, angles, planarity
Not 

non-bonded contacts
variable torsion angles

Data bases – a Powerful Tool
Premise – ain’t nothin’ new”
Almost everything that you see…

Should have been seen before
In one of the hundreds of prior structures

If it looks new…
M st lik l   ist k
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Most likely a mistake
Not all structures the same!

but built of common fragments
Tools to find prior fragments that fit density
Especially useful at modest resolution
Program “O”

Programs
Coot – currently most popular

Paul Emsley
O – still fans.  Best database searches

T. Alwyn Jones & colleagues
Quanta – More automated; Commercial;

Tom Oldfield et al
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Tom Oldfield et al.
Automation:
Main – D. Turk; Textal – T. Ioerger; Resolve -
Terwilliger
Automation

Best programs do easiest 75% w/ good map
7 months to complete? / 30% w/in 100 days.
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MODEL-REFINEMENT
Part II
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Refinement
Computer optimization of atomic model
Fit to the Experimental Diffraction Data
Agreement with known stereochemical values

Lengths of bonds…

Minimize (e g ) U = ΣΣ ((ρρ ––ρρ ))22 + + ΣΣ wwLL ((LL --LL∅∅))22
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Minimize (e.g.) U = ΣΣxx((ρρo,o,xx ρρc,c,xx)) + + ΣΣrrwwL,rL,r((LLrr LL )) ..
Fit to density over map grid points, Fit to density over map grid points, xx..
Deviation from known Deviation from known stereochemistriesstereochemistries, L, L∅∅..

Objective Function - Type
What we are trying to minimize

Real space: Min Σx(ρo,x–ρc,x)2 + ΣrwL,r(Lr-L∅)2.
Niche-only: density limited by phases

Reciprocal space

 Σ (| | | |)2  Σ ( ∅)2 
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Min Σh(|Fo,h| – |Fc,h|)2 + ΣrwL,r(Lr - L∅)2 

Fit to diffraction amplitudes
(Optionally phases)
By far most popular

Objective Functional Form
Minimizing error - Least-squares: Σ(xo – xc)2:

Solution of minimal error
Errors assumed Gaussian & Independent
Simpler
Programs: X-Plor; TNT; ShellX

M i  Lik lih d is b tt :
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Maximum Likelihood is better:
Most likely to be consistent w/ data
Probabilistic estimates for all errors
Bayesian statistics / Newer / Complex
Programs: Phenix; Refmac
Advantage: Over-fitting reduced

Over-fitting
Fit is too good

Expected discrepancies:
Random errors in data
Missing elements of model – solvent; disorder etc..

Over-fitting when refinement works too well
Model compensates for errors / deficiencies
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Model compensates for errors / deficiencies
Facilitated by global nature of refinement

Each |F| depends on every atom
Error (or omission) of atoms in one region 
compensated by adjustments of other atoms
“Restoring” good fit between |Fo| & |Fc|

Monitored by cross-validation – Rfree.

Need for Stereochemical 
Restraints/Constraints

Diffraction experiments yield insufficient data 
to refine unrestrained individual atoms
How many data points?

Assume (35Å)³ cell at 2.7Å resolution
10 300 reflections
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10,300 reflections
Atomic parameters

3,000 atoms x {x,y,z,B} = 12,000 parameters
Under-determined – no unique answer
Perfect data – data pts >= # parameters
Reality – would need Data:parameter ratio > 6:1
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Restraints / Constraints improve 
Data:Parameter ratio

Constraints reduce 
parameters
Groups of atoms refined 
as rigid bodies
R d  t

Restraints increase # 
“data points”
Penalty for deviation

((LLrr -- LL∅∅))22
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Reduce parameters
Example Phe side chain

Individual parameters:
6 + 1 atoms
7 x 3 positional params

Rigid body
3 angles for orientation
3 coordinates for center

Like adding new datum
(|(|FFo,o,hh| | –– ||FFc,c,hh|)|)22

Many – 32 in example
7 bond lengths
18 bond angles
6 torsion angles
1 planarity

Typical Restraints & Constraints 
embody our a priori knowledge

Typical Restraints
Covalent bond lengths
Bond angles
Fixed torsion angles

Rings

Constrained refinement
Fully constrained –

atomic refinement does 
not converge as well
Not flexible enough
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g
Peptide bond

Variable torsion angles
φ, ψ, χ have optima, but 
some variation

Van der Waal’s separation
Not usually H-bonds

Fix structure

Constraints used in
Rigid-body refinement

Molecular 
replacement

Some in “restrained” 
refinement

Chemical Sequence

Ways that Restraints can be Specified
Everything as distances

Simplest; weighting easiest
Not very intuitive
Program Prolsq, SHELLX

As the parameters we use

ΣΣrrwwL,rL,r((LLrr -- LL∅∅))22 + + ΣΣss ((θθss -- θθ∅∅))22 + + ΣΣsswwΝΒΝΒ,n,n((ddss -- dd∅∅))22 + …+ …
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L,L, ,,

Program TNT
As an empirical energy function, e.g. CHARMM

ΣΣrrkkL,rL,r((LLrr--LL∅∅))22 + + ΣΣsskkθθ,s,s((θθss--θθ∅∅))22 + + ΣΣnnkkNB,nNB,n((A/d11
n–B/d5

n))22 + …+ …
Note similarities, minor differences: Note similarities, minor differences: formform, k vs. w…, k vs. w…

Minimize potential energy w/ a new energy:
Exray = Σh(|Fo,h| – |Fc,h|)2 (others possible)

Programs X-plor; CNS; Phenix.refine

How to Weight Stereochemistry
Stronger weight more ideal stereochemistry

Less easy to fit diffraction data
What is the correct weight?

X-plor / CNS: option to calculate weight 
~equal improvement of stereochemistry & fit 
to diffraction data
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to diffraction data
Phenix: minimum Rfree vs. weight

Requires ~ 10 cycles of refinement for each point
Modern computers fast – this is worth doing

log weight

Rfree

Caution – automatic 
weight determination in 
CNS is by a lesser 
method.

Ways of Finding the Optimum

Gradient descent
Simulated annealing

11/6/2009 Michael S. Chapman (Oregon Health & Science University) 17

g

Gradient Descent
Several methods

E.g. Conjugate gradient
Principle: at optimum…

partial derivative of objective function = 0
δδr/r/δδxxii = 0= 0
S  if   ΣΣ (|F(|F | | |F|F |)|)22   ΣΣ (L(L LL∅∅))22
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So, if r = ΣΣhh(|F(|Fo,o,hh| | –– |F|Fc,c,hh|)|)22 + + ΣΣrrwwL,rL,r(L(Lrr -- LL∅∅))22

δδr/r/δδxxii = 2= 2ΣΣhh(|F(|Fo,o,hh| | –– |F|Fc,c,hh|).|).δδ(|F(|Fc,c,hh|)/|)/δδxxii + … = 0+ … = 0
Determine changes to parameters leading: r 0
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Linear vs. Non-linear Refinement
Linear

Optimal 
parameters 
can be 
calculated 
immediately
Requires 

Non-linear
Parameters are inter-dependent
Partial derivative with respect to one 
parameter depends on parameters of 
other atoms

Overlapping electron density
Atoms linked by chemical interactions
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q
that 
parameters 
are 
independent 
of one 
another

Atoms linked by chemical interactions
|F| depend on all atoms

Two practical implications
Solve only for shifts that improve r

Iterate to progress towards optimum
Local minima

Local Minima
G = global optimum
L might be a model that fits 
reasonably, but perhaps

Not as well as G
Or with worse 
stereochemistry

R t ti  b t i ht k  

U

L M G

S
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Rotation about χ2 might make 
the fit or stereochemistry

Worse (M) before better
Gradient descent does a good 
job of getting from S to L
But can never go up-hill to find 
a better optimum

Moving from Local to Global Minima
Rebuilding using Interactive Computer Graphics
Simulated Annealing & Molecular Mechanics

Each atom is given a random initial velocity
Mean velocity corresponds to a temperature

3,000 to 10,000 K.

At  i t t  h i  h th ’  
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Atoms interact, changing each other’s 
trajectory
Determined by solving Newton’s equation of 
motion repeatedly over short time intervals
E is energy
∇ is directional gradient δ

δ

2

2

xi xi

t
E

mi

= −
∇

How does Molecular Dynamics help?
Atoms are moving
Kinetic energy can be 
converted to potential energy
Can overcome an energy 
barrier to find global minimum
Time spent at each minimum 

U

U
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Time spent at each minimum 
depends on depth

Chance that could move 
away from global minimum
But less chance than moving 
from local minimum.

Annealing Schedules
Initial velocities simulate T = 3-10,000 K
Energy withdrawn to simulate drop to 290 K
Slow cooling – steps of about 25 K

Energy gradually falls below that needed to 
escape deep minima
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While still sufficing to escape local minima

Coordinate Systems
Most refinement programs in 
Cartesian space

Atoms move in straight lines
Torsion angles are the primary 
determinants of structure

Changes – move atoms in arcs
C t i   li it  t  i Cartesian change 
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Cartesian approx limits step size
Improved fit balanced by 
worse stereochemistry

CNS; X-plor; Phenix (?) support 
torsion angle refinement

More efficient w/ poor models

Cartesian change 
moves through bad 
stereochemistry
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Programs & their merits
TNT - Restrained least squares

Efficient & Very easy to understand
Tronrud, Ten Eyck & Matthews

SHELXL – High resolution; only one for Anisotropic B’s
George Sheldrick

X-plor CNS Phenix - Axel Brünger; Paul Adams et al.
Least squares or Maximum Likelihood
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Least squares or Maximum Likelihood
Simulated annealing or Conjugate gradient
Cartesian or Torsion angle (?)
Empirical energy

REFMAC - Murshudov, Vagin & Dodson
Fast, Maximum likelihood

Most popular are Phenix and RefMac

Refinement is a Process as well as a Program
Refinements good at local optimization

Rarely find global optimum
Parts where locked in local optimum

Need to alternate
Automatic refinement
“Manual” rebuilding using computer graphics
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Manual  rebuilding using computer graphics
Focus on regions of:

Poor stereochemistry – fighting the fit
Poor fit to density

Usually use improved map with phases calculated 
from the latest model

Usually 3 or 4 turns of refinement & re-building

MODEL-PHASED MAPS
Part III
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Context
Phases calculated from a refined model are 
better than most experimental phases
Rebuilding in an improved map: 

Can indicate how to escape local mimima
Parts not yet modeled
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Ligands
Disordered regions...

Premise: each F is a wave extending thro’ all map:
Has phase input from all atoms
Good regions of model help map in poor regions

Credits
Following illustrations are taken from
Kevin Cowtan’s Book of Fourier

http://www.yorvic.york.ac.uk/~cowtan/fourier/
fourier.html
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Introducing Felix

A cat – that has a tail
But hasn’t yet found it…

Manfred the Manx – who never had a tail
Can we reveal the tail fr. image calculated w/

F li ’  F i  lit d
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Felix’s Fourier amplitudes
Tail and all

Manfred’s phases
No tail
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Illustrations of Fourier Transforms
Brightness indicates amplitude
Color indicates phase
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FT

Can we Find the Missing Tail?

FT φmanx

F

Model

Diffraction
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FT |F|Felix

FT

Monochrome, ‘cos 
missing phases

Diffraction

Picky-picky – the tail is weaker
Jensen showed that phases account for ½ of map
Body should be twice as strong as tail

Body “in” |F| & φ
Tail only in φ.

Solution – subtract ½ a body (Fourier)
|F | ½|F |  φ  “2F  F ” 

11/6/2009 Michael S. Chapman (Oregon Health & Science University) 33

|FFelix| - ½|Fmanx|, φmanx = “2Fo – Fc” 

Potential for Bias if Phasing Model Wrong
Suppose we collected diffraction for a cat
But thought that it was a duck…

FT φduck

FTModel
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FT |F|Felix

Diffraction

Model phases 
misleading 
image.
Never know that 
really a cat.

Potential for Bias – or - Disaster…

Poor initial map incorrect model
Subsequent maps biased to incorrect model
If you are lucky…

Does not refine well; Rfree remains high
Indicates a potential problem
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n a  a p n a  pr m
Somewhere

May be little indication of where the problem is.
Not so lucky examples:

Carboxypeptidase: Bill Lipscomb
RuBisCO: Chapman…

Remedies
Difference map: (|Fo| - |Fc|, φcalc)

Shows differences between:
What the model should be
What it currently is

Negative peaks where model shouldn’t be
Positive peaks where should be more model
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Positive peaks where should be more model
Difficult to interpret when noisey

2Fo-Fc maps
Only a minor improvement – still biased
2mFo – DFc maps – better (& fast)

Omit maps
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Omit maps
Map small piece of structure (3-5%)

Covering a few residues
Or a small box

Phases calculated from structure omitting atoms 
near this region
Procedures for automatically assembling many 
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Procedures for automatically assembling many 
small maps complete structure
Should be unbiased…

Better, but still can be biased

Bias in Omit Maps
May be several ways 
of changing cat to 
make consistent with 
phaseless amplitudes

A big ear might 
compensate for a 
wrong tail…
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FT Map omitting tail:
Still shows incorrect 
tail.

Phases calculated from 
big ear are more 
consistent w/ incorrect 
tail than correct one.

Mitigating Bias in Omit Maps
Problem is combination of phasing with

Refinement against amplitudes
Simulated-annealing omit maps

Undo (?) bias by refining phasing model w/o 
omit atoms
~100 refinements / cycle – very slow
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~100 refinements / cycle – very slow
Best with Sigma-A weighting

Cycle local real-space model refinement w/ omit 
phase calculation

Even more intensive
Big issue w/ structures worse than 2.7 Å

Higher resolution becoming more common

MODEL QUALITY & 
VALIDATION

Part IV
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R-factors: Global Indicators of Quality
R = Σh||Fo| - k|Fc|| / Σh|Fo|

k is scaling constant (function); h = Miller index
Expected values

0.59 (59%)  - randomly placed atoms
0.30 – 0.50 – OK - for unrefined structure
 0 30 ( fi d) i  
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> 0.30 (refined) – incorrect structure
0.25 – 0.3 – 10-20% structure wrong
0.20 – 0.25 – a few problems

1 or 2 frame-shift errors…
0.15 – 0.20 – great model
0 – perfect model – never get there

Imperfect models

Never complete
Missing atoms

Solvent (always); Others (sometimes)
Disorder

Reality is population of conformers
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a y  p pu a n f nf rm r
Model usually only most populous

Dynamics
Local vibrations - Temperature factors
No models of large correlated motions

Deficiencies combining - R almost never < 0.12
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Problems with R-factors
Global – no indication of where the error is
Biased by over-fitting
Unit-less – what is the Å error?
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Local Index: Real-space R-factor / Correlation
Rreal space = Σx|ρo – kρc| / Σx|ρo + kρc|
Compares electron density values at map grid 
points near…

Selected atoms
Problems:

El t  d it  d d   i t  h
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Electron density depends on inaccurate phases
At end of refinement, phases from model

Biased

Local Index: Temperature Factors

B = 8 π2 <u2>
<u2> is mean square displacement of vibration

B also reflects model quality
If atoms stuck in wrong place...

Poor agreement w/ diffraction data
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r agr m n  w/ ffra n a a
High B smears out the atom

Better agreement w/ diffraction
B-values reflect quality, motion & static disorder

Subjective interpretation of which applies

Stereochemistry – indirect measure of quality

Protein refinement is “restrained”
Simultaneously improving

Fit to diffraction
Agreement with known stereochemistry

Often  when atoms are stuck in local minimum
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Often, when atoms are stuck in local minimum...
Improving fit balanced by deteriorating 
stereochemistry
Poor stereochemistry can be used to highlight 
problems

RMSDs – A global indicator
Root mean square deviations

From expected geometry
Expected RMSDs for a reasonable structure

Bond lengths < ± 0.02 Å
Bond angles < ± 2.5º
P tid  t i  l   ± 7º 
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Peptide torsion angle ω < ± 7º 
Side chain torsion angles χ < ± 15º 
Non-bonded contacts < ± 0.1 Å

Maximum deviations – a local indicator
Sites of greatest fighting:

Fit to diffraction vs. stereochemistry
Are likely sites of errors in model

All types of geometry should be monitored
Procheck – Laskowski; MolProbity - Richardson²;
Phenix.refine; Coot...

Unrestrained geometry is most sensitive

Branden & Tooze
©

 1999 Garland
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g y
φ,ψ (Ramachandran) most useful – if not restrained
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More problems w/ R-factors

R= Σh||Fo| - k|Fc|| / Σh|Fo|

r = w Σh(|Fo| - k|Fc|)2 + Ustereochemical
Minimize r – tend to reduce R
R measures fit of model to x-ray data

N t n ind p nd nt m sur  f m d l qu lit
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Not an independent measure of model quality
Over-fitting

Results in R being too optimistic
Because # model parameters > expt data points
Occurs when w too large

Insufficient weight on standard stereochemistry

R-factors – Measure Goodness of Fit

Simple analogy – fitting 
line to data…
R-factor could be used to 
quantify fit of line.

Similar to coefficient 
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Similar to coefficient 
of regression

Sum of distances: 
Data to model
“Model” is straight line

Improving R (Goodness of Fit)
2) Make model more flexible:

a) Add parameters: 
y = ax + c y = ax²+ bx + c
b) Adding H2O, Bs etc.

c) Relaxing stereochemistry
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1) Improve the 
model (change 

the line)

3) Discard data
Easier to fit, but worse model

R-factor must be evaluated in context
How many data points for each parameter?

Data points depend on inverse cube resolution
Can refine fewer parameters at low resolution

Were the stereochemical restraints too flexible?
Rmsd bond lengths ~ 0.01 Å, angles 2.5°…
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g g
Tables of such parameters

φ,ψ – Ramachandran plot

Cross-validated “free”-R-factors
Set aside 3-10% data

Selected randomly
Never used in refinement

Only used to assess quality of model
Calculate Rfree against only this data

N t fi d  s  i d d t f st h i l 

11/6/2009 Michael S. Chapman (Oregon Health & Science University) 53

Not refined, so independent of stereochemical 
restraints, # data etc..
Indicator of model quality.
(1 to 5% Higher than conventional R-factor)
Rfree < 30% means structure approx. correct

Estimated Standard Deviations (Å)
None of the methods above error bars for 
each atom
Least-squares refinement can e.s.d.s

Only w/ “full matrix” refinement
High resolution, small structures
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Usually have to diagonalize normal matrix
Usually can only estimate average coordinate 
error

From expected discrepancy of |Fo| & |Fc|
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Estimating overall error

Two related methods
Luzzatti plot
Sigma-A plot “σA”

Common principle
Given coordinate error 
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Given coordinate error 
Dependence of ||Fo| - |Fc|| on resolution

Differences
Luzzatti assumes errors only in position
Sigma-A plot accounts for missing structure

Luzzatti Plots (1954)
Calculate expected R 
vs. resolution

Read 1/2d = sinθ/λ
for resolution
Straight lines

Plot R vs. resolution 
f r ur structur

0.3

0.2R
Å

<Δr> = 0.16Å
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for your structure
Match at high 
resolution

Nearly linear –
hopefully

Rfree better than R Sigma-A plot conceptually similar
More complicated
Usually similar estimates

0.2

0.1

R

0.1 0.2
sinθ/λ

<Δr> = 0.08Å
<Δr> = 0.12Å

Typical error levels
Values depend on

Quality of refinement
Resolution of refinement

Values to hope for
Refinement resolution <|Δr|2>
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3 Å 0.5 Å
2 Å 0.2 Å
Better than 1 Å 0.05 Å

Conclusion – topics for another day...

Intelligent analysis of structure / function
Appreciation for the limitations in structures

Crystallographic methods for complexes
Methods for physical / chemical properties
Biological inferences
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Biological inferences
Conservation of structure & function

Extrapolations
Energy minimization & Docking
Dynamics

Prediction of Function & Mechanism


