

11/6/2009 Michael S. Chapman (Oregon Health & Science University)

Over-fitting

- ≻ Fit is too good
- Expected discrepancies:
- Random errors in data
- Missing elements of model solvent; disorder etc..
 > Over-fitting when refinement works too well
- Model compensates for errors / deficiencies
- > Facilitated by global nature of refinement
- Each |F| depends on every atom
- Error (or omission) of atoms in one region compensated by adjustments of other atoms
- "Restoring" good fit between |F_o| & |F_c|
- ► Monitored by cross-validation R^{free}.

Need for Stereochemical Restraints/Constraints

- Diffraction experiments yield insufficient data to refine unrestrained individual atoms
- > How many data points?
 - Assume (35Å)³ cell at 2.7Å resolution
 - 10,300 reflections
- > Atomic parameters
- 3,000 atoms x {x,y,z,B} = 12,000 parameters
- > Under-determined no unique answer
- > Perfect data data pts >= # parameters

11/6/2009 Michael S. Chapman (Oregon Health & Science University)

> Reality - would need Data:parameter ratio > 6:1

(c) Michael S. Chapman

11/6/2009

Michael S. Ch

aalth &

Rebuilding using Interactive Computer Graphics

- > Simulated Annealing & Molecular Mechanics
 - Each atom is given a random initial velocity
 Mean velocity corresponds to a temperature

 3,000 to 10,000 K.
 - Atoms interact, changing each other's trajectory
 - Determined by solving Newton's equation of motion repeatedly over short time intervals

 δt^2

 m_i

- E is energy
 - ∇ is directional gradient
- 01 11/6/2009 Michael S. Chapman (Oregon Health & Science University

How does Molecular Dynamics help?

- > Atoms are moving
- Kinetic energy can be converted to potential energy
- Can overcome an energy barrier to find global minimum
- Time spent at each minimum depends on depth
 - Chance that could move away from global minimum
 - But less chance than moving from local minimum.

11/6/2009 Michael S. Chapman (Oregon Health & Science University)

Annealing Schedules > Initial velocities simulate T = 3-10,000 K

11/6/2009

- > Energy withdrawn to simulate drop to 290 K
- Slow cooling steps of about 25 K
- Energy gradually falls below that needed to escape deep minima
- While still sufficing to escape local minima

Michael S. Chapman (Oregon Health & Science University

Programs & their merits

> TNT - Restrained least squares

- Efficient & Very easy to understand
- Tronrud, Ten Eyck & Matthews
- SHELXL High resolution; only one for Anisotropic B's
 George Sheldrick
- > X-plor \rightarrow CNS \rightarrow *Phenix* Axel Brünger; Paul Adams *et al.*
- Least squares or Maximum Likelihood
- Simulated annealing or Conjugate gradient
- Cartesian or Torsion angle (?)
- Empirical energy
- > REFMAC Murshudov, Vagin & Dodson
- Fast, Maximum likelihood
- Most popular are Phenix and RefMac

11/6/2009 Michael S. Chapman (Oregon Health & Science University)

- Refinement is a Process as well as a Program > Refinements good at local optimization • Rarely find global optimum • Parts where locked in local optimum > Need to alternate • Automatic refinement
 - Automatic refinement
 - "Manual" rebuilding using computer graphics
- > Focus on regions of:
- Poor stereochemistry fighting the fit
- Poor fit to density
- Usually use improved map with phases calculated from the latest model
- Usually 3 or 4 turns of refinement & re-building 11/6/2009 Michael S. Chapman (Oregon Health & Science University) 26

Context

- Phases calculated from a refined model are better than most experimental phases
- > Rebuilding in an improved map:
- Can indicate how to escape local mimima
- Parts not yet modeled
 - Ligands
 - Disordered regions...
- > Premise: each F is a wave extending thro' all map:
- Has phase input from all atoms
- Good regions of model help map in poor regions

11/6/2009 Michael S. Chapman (Oregon Health & Science University)

Credits

- > Following illustrations are taken from
- > Kevin Cowtan's Book of Fourier

11/6/2009

http://www.yorvic.york.ac.uk/~cowtan/fourier/ fourier.html

Michael S. Chapman (Oregon Health & Science University

Potential for Bias - or - Disaster...

- > Poor initial map \rightarrow incorrect model
- > Subsequent maps biased to incorrect model
- ➤ If you are lucky...
- Does not refine well; R^{free} remains high
- Indicates a potential problem
 Somewhere
- > May be little indication of where the problem is.
- > Not so lucky examples:
- Carboxypeptidase: Bill Lipscomb
- RuBisCO: Chapman...

11/6/2009 Michael S. Chapman (Oregon Health & Science University)

Remedies

- > Difference map: $(|F_o| |F_c|, \phi_{calc})$
 - Shows differences between:
 What the model should be
 - What it currently is
 - Negative peaks where model shouldn't be
 - Positive peaks where should be more model
 - Difficult to interpret when noisey

> 2Fo-Fc maps

- Only a minor improvement still biased
- 2mFo DFc maps better (& fast)
- > Omit maps

11/6/2009 Michael S. Chapman (Oregon Health & Science University)

Mitigating Bias in Omit Maps

- Problem is combination of phasing with
 Refinement against amplitudes
- > Simulated-annealing omit maps
- Undo (?) bias by refining phasing model w/o omit atoms
- ~100 refinements / cycle very slow
- Best with Sigma-A weighting
- Cycle local real-space model refinement w/ omit phase calculation
- Even more intensive
- > Big issue w/ structures worse than 2.7 Å
 - Higher resolution becoming more common

Problems with R-factors

- > Global no indication of where the error is
- Biased by over-fitting

> Unit-less - what is the Å error?

Local Index: Real-space R-factor / Correlation R_{real space} = Σ_x|ρ_o - kρ_c| / Σ_x|ρ_o + kρ_c| Compares electron density values at map grid points near... Selected atoms

- Problems:
- Electron density depends on inaccurate phases
 At end of refinement, phases from model
 - Biased

Local Index: Temperature Factors

> B = 8 $\pi^2 < u^2 >$

- <u²> is mean square displacement of vibration
- > B also reflects model quality
- > If atoms stuck in wrong place...
- Poor agreement w/ diffraction data
- High B smears out the atom
- Better agreement w/ diffraction
- > B-values reflect quality, motion & static disorder
 - Subjective interpretation of which applies

11/6/2009 Michael S. Chapman (Oregon Health & Science University)

11/6/2009 Michael S. Chapman (Oregon Health & Science University)

11/6/2009 Michael S. Chapman (Oregon Health & Science University) 44

Stereochemistry - indirect measure of quality

- Protein refinement is "restrained"
 - Simultaneously improving
 - Fit to diffraction
- Agreement with known stereochemistry
- > Often, when atoms are stuck in local minimum...
- Improving fit balanced by deteriorating stereochemistry

11/6/2009 Michael S. Chapman (Oregon Health & Science University)

Poor stereochemistry can be used to highlight problems

RMSDs - A global indicator > Root mean square deviations

Michael S. Chapman (Oregon Health & Science University

- From expected geometry
- > Expected RMSDs for a reasonable structure
- Bond lengths < ± 0.02 Å</p>
- Bond angles < ± 2.5°</p>

11/6/2009

- Peptide torsion angle ω < ± 7°</p>
- Side chain torsion angles $\chi \star \pm 15^{\circ}$
- Non-bonded contacts < ± 0.1 Å</p>

Maximum deviations - a local indicator
Sites of greatest fighting:

Fit to diffraction vs. stereochemistry
Are likely sites of errors in model

Are likely sites of errors in model
Are likely sites of errors in model
Procheck - Laskowski; MolProbity - Richardson²;
Phenix.refine; Coot...

Unrestrained geometry is most sensitive

\$\overline\$ (Ramachandran) most useful - if not restrained

