

Challenges of Rotation Function

- > Many solutions look ~equally good.
- > The highest scoring is not always correct

10/23/2009 Michael S. Chapman (Oregon Health & Science University

 \succ Correct could be 30th... or worse

Translation Functions are Challenging

> Patterson functions intrinsically noisy

- Translation functions sensitive to exact orientation
- Slight orientational error →
- May miss correct position
- > Techniques to improve your chances
 - Combine with other information
 Packing analysis molecules overlap?
 - Refine orientation Patterson correlation function

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

Confusing Names

- Uses Heavy Atoms, but not "Heavy Atom Method"
- > Adds atoms rather than *replacing* them
 - Historically based on methods where replaced
- Isomorphous protein must remain in same conformation after heavy atoms added

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

or almost so

Heavy Metal - Chemistry

- > Hg binds covalently to Cys
- Great if works
- Sometimes reduces essential disulfides
 Denatures protein
- > Covalent binding to 1° amines:
 - K₂PtCl₄ K₂AuCl_{4...}
- Charged interaction also possible, e.g. K₂AuCl₂
- > Electrostatic binding
 - E.g. PbAc₂, uranyl acetate & carboxylates

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

Why particular reagents may not work

- Conformational change
- Denaturing
- Subtler non-isomorphism
- > Binds at too many sites (to determine positions)
- > No binding sites reactive sites occluded

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

- Buffer interactions
 - PtCl₄²⁻, AuCl₄²⁻ react w/ amino "Good" buffers
 - Reagent precipitated
 - Buffers containing PO₄, SO₄ precipitate Hg⁺, Hg⁺⁺, Pb⁺⁺ etc..

Searching for derivatives

- > Typically have to test dozens of reagents
- Sometimes hundreds
- Each at several concentrations
- Excellent guidelines for efficient searches:
- Petsko, G. Methods in Enzymology 114
- Blundell & Johnson, "Protein Crystallography", 1976.
- Chemical series try most reactive, then least
 E.g. PtCl₄²⁻, AuCl₄²⁻
- > But... Differ in "hardness", lability
- Ionic vs. covalent interactions
- > Try examples of "soft" & "hard" species

- Derivatives the bottom line
- Diffraction / phasing power
- > Days of work, each test
- ≻ Data set
 - Quality of diffraction
 - Are the intensities changed?

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

- Determine sites
- Phases good enough?

Frustrations of Screening

> Can fail at a number of stages

- > Final tests require substantial investment of work
- Careful preliminary tests!
- May need to try many compounds
- > May need to transfer to more favorable buffer
- > Will need ~ three derivatives
 - Couple of months \rightarrow a year or two

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

From heavy atoms to phases... (overview)

- For each reflection...
- > Solve for α_P by triangulating: $\mathbf{F}_{PH} = \mathbf{F}_P + \mathbf{F}_H$.
- $\succ\,$ Need $\alpha_{\text{H}},$ calculated from positions in unit cell.
- Determination of positions
- Difference Fourier if preliminary phases

Michael S. Chapman (Oregon Health & Science Ur

Meaning of the Patterson

- $> P(\mathbf{u}) = \int_{\mathbf{u}} \rho(\mathbf{x}) \rho(\mathbf{x} \mathbf{u}) d\mathbf{x} = \sum_{h} |\mathbf{F}_{h}|^{2} \cos 2\pi (h\mathbf{x})$
- > Let $\rho(\mathbf{x})$ = 0, except at atom positions
- P(u) is zero except when x & x-u are atoms
- Peaks in P(u)
 - When **u** is an inter-atomic vector
- Height = $\rho(\text{atom1}) \times \rho(\text{atom2}) = Z_1 \times Z_2$.
- Number = N², N at origin
- Blurred according to resolution overlapped
 > Interatomic vectors → solve small structure
- Large structure Patterson too complicated
- > Difference Patterson $|F_{PH}-F_P|$ approx heavy atoms

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

Patterson \rightarrow Atom positions: Harker Sections

- > Patterson peaks a.k.a. "vectors"
- > Crystal symmetry \rightarrow concentration in planes
- Example 2-fold along b:
- $(x,y,z) = (-x, y, -z) \rightarrow \text{vector} = (2x, 0, 2z)$
- Harker section (u,v,w) <u>v=0</u>; u=2x; w=2z
- > Example 21 along b:
 - $(x,y,z) = (-x, y + \frac{1}{2}, -z) \rightarrow \text{vector} = (2x, \frac{1}{2}, 2z)$
 - Harker section (u,v,w) <u>v= 1/2</u>; u=2x; w=2z
- 1. Search (Harker sections) for peaks
- 2. Find (x,y,z) consistent w/ peaks
 - Educated guesswork
 - Systematic computational searches
 Michael S, Chapman (Oregon Health & Science University)

10/23/2000

- > Use 2nd derivative to calculate approx phases
- > Calculate difference Fourier using 1st derivative amplitudes and 2nd derivative phases
- $\rho(\mathbf{x}) = 1/V \Sigma_{\mathbf{h}} (|\mathbf{F}_{\mathsf{PH}\,\mathbf{h}}| |\mathbf{F}_{\mathsf{P}\,\mathbf{h}}|) \exp\{-2\pi i \mathbf{h} \cdot \mathbf{u}\}$
- Coefficients are not squared less error
- N peaks for N sites

(c) Michael S. Chapman

8

Two Strategies for Phasing with Anomalous		Theory – Anomalous Diffraction \rightarrow Phases	
Diffre With tunable x-ray source > MAD method > Collect at 3 wavelengths • Maximize $ \Delta F - \lambda_1$ • Maximize $f'' - \lambda_2$ • Far from edge - λ_3 > Treat $F(\lambda_3)$ as ~ native • No need for another crystal > $F(\lambda_1), F(\lambda_2)$ like 2 derivatives	With Fixed wavelength > SIRAS / MIRAS > Collect native + derivative • Primary phasing from SIR / MIR > Collect both F(+), F(-) > Differences in F _H (+), F _H (-) • Supplementary phase information • Breaks ambiguity • (Determines hand)	$F_{H(-)copym} + F_{P(+)anom} + F_{$	x _p (-) solutions nirror sout the red line)
10/22/2000 Michael & Chanman (Onesen	Idealth & Calansa I Iniversity) 52	10/22/2000 Michael C. Chapman (Oregon Lighth & Esigner Linius site)	64

(c) Michael S. Chapman

≻ Natural atom

- Fe proteins etc..
- > Isomorphous atom substitution
- Lanthanide for Ca⁺⁺, etc..
- Se for S
- Express in bacteria that require Met.
- Replace Met in media by seleno-Met.
- Expression can be a challenge.

> When all else fails:

Make derivative - solve derivative not native

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

Processing MAD Data

- > Start as in SIR determine heavy atom sites
- > Then calculate phases...
- Several methods
 - All fundamentally like MIRAS
 - Where do the magnitudes of F(λ₁), F(λ₂)... intersect?
 - Known Magnitudes and directions for
 F_A = F_H, Δf, f"

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

MAD Algorithms

- Hendrickson & Smith deterministic method
- Calculate F_A , Δf , f" from 1st principles
- Phase determined geometrically
- 2 wavelengths enough (if no exptl. error)
 3rd → Least squares → best solution
- > *Pseudo* MIR pretend each λ is a derivative
- Statistics through phase probability distributions
- Now Maximum likelihood methods
- SHARP: Maximum likelihood refinement of MIR / MAD parameters (Bricogne & Colleagues)
- SOLVE / RESOLVE: Maximum likelihood MAD
 → auto-building (Terwilliger & Colleagues)

10/23/2009 Michael S, Chapman (Oregon Health & Science University)

Isomorphism in MAD

- > All data from one crystal
- "Native" + "Derivative"
- > Data sets are isomorphous by definition
- > Eliminate big source of error in phasing
- Surprising how much one can do w/ a little anomalous signal

10/23/2009 Michael S. Chapman (Oregon Health & Science University

If perfectly isomorphous

Why's everyone MAD about MAD No derivatives required Seleno-Met expression or metalloprotein At most one derivative required Most accurate experimental phases possible If strong anomalous scatterer Mannose Binding Protein A / Ho³⁺ (Burling & Brünger)

Information that can be used

≻ Partial model

- Constraint that two identical subunits should have same electron density
- When not related by crystallographic symmetry
- > Map features common to all protein crystals
- Solvent regions flatter
- Expected shape of density
 Histogram of density levels

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

Density Modification and More

- Averaging, solvent flattening are examples of "Density modification"
- Something gained by merely modifying map
 Symmetry averaging reduces noise

10/23/2009 Michael S. Chapman (Oregon Health & Science University

More gained by requiring phases to be consistent with the constraint

Phase changes

- > Consider:
 - Fourier transform: F, $\phi \rightarrow$ map
 - Inverse transform: map → same F, φ.
 (Not doing anything)

Now Consider:

- Fourier transform: $F, \phi \rightarrow map$
- Modify map \rightarrow map'(symmetry, solvent flatten)
- Inverse transform: $map' \rightarrow F'$, ϕ' . (changed)
- FT again: $F', \phi' \rightarrow map'$
- Map would fit constraints exactly
- (But actually, can do a lot better...)
- Note that both F & ϕ have changed
- F was observed probably should not be changing 10/23/2009 Michael S, Chapman (Oregon Health & Science University)

Density modification 1 - Solvent Flattening > Solvent molecules more motile

- Smeared at high resolution
- > Solvent regions should be ~ featureless = "flat".
- \succ Phase errors \rightarrow errors in all parts of map

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

- Solvent regions may not start flat
- How can we change phases to maximize the flatness?

Solvent Flattening B.-C. Wang implementation

- > Determine solvent region in map
- Change density to average
- > FT-invert map → $|F_{map}|, \phi_{map}$
- > Discard $|F_{map}|$; Combine ϕ_{map} with $|F_o|$, $\phi_{experimental}$
- ≻Calculate a new map
- Flatter, but not flat
- > Repeat the process

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

How to determine solvent region -- Premise

- > Need to know which areas to flatten.
- Solvent electron density
 - Few features
 - Some density everywhere
- Low average value
- > Protein regions
- Very High where protein atoms
- Lower than solvent between protein atoms
- Average higher than solvent

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

Source of the Information - Redundancy!

- Diffraction = continuous molecular transform sampled at lattice points
- ¹/₂ information to reconstruct missing phases
 2nd crystal:
 - Transform sampled @ different pts.
 - Information to calculate phases
 in principle
 - Multiple crystals ≈ internal symmetry
 - Multiple copies of molecule in crystal a.u.:
 - Unit cell bigger \Rightarrow more reflections

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

Same information needed to solve unique part

History

- Reciprocal space methods developed by Rossmann, Blow, Crowther, Main *et al.*, 1960's
- Potential realized when a real-space equivalent was formulated (Bricogne, 1976)
- Slow realization multiple copies advantageous
 1980's: more structures determined w/ NCS
- > 1990's: many determinations w/ multiple crystals

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

Averaging Prerequisites

Initial phases

- > "Envelope" which part of unit cell to average
- > Orientation of the symmetry
- > Position (origin) about which to rotate
- > Usual methods
- Rotation and Translation functions

Nomenclature

- > Due to central importance of Rotation & Translation functions, often see reference to
- "Phase refinement by Molecular Replacement"
- ➤ Confusing! Prefer
- "Molecular replacement" for
 use of homologous known structure for phasing
- "Symmetry averaging" for
- Use of symmetry redundancy for phase improvement

Envelope defines regions to average

- Average protein w/ same bit of protein
 Not solvent, some other part of protein...
- > General case define individual protein

Foo large & overlapped neighbo night be "averaged" w/ solvent

> Or wrong protein, perhaps from a different unit cell:

10/23/2009 Michael S. Chapman (Oregon Health & Science U

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

10/23/2009 Michael S. Chapman (Oregon Health & Science University) 86

The Envelope Challenge

- > Requires electron density map
- > May start very poor
- > Recognizing solvent protein boundary not trivial
- Solvent flattening methods may help
- > Distinguishing proteins near guess-work

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

- > Need good enough guess to start
- Structure determination often blocked by poor starting envelope - envelope definition is often the most challenging step in structure determination.

Automatic Envelope Determination

- Solvent boundary à la B.C. Wang
 Trial & error
 Operator
- Trial & error Operator AtoB? N Protein to Solvent
 For each region in map...
- Apply symmetry operator
- If density not similar, might not be protein
- milar, Protein to Protein tein

Operator BtoA? OK

- > Smoothing, Overlap trimming
- > Programs use one or more of these tricks
- MAMA (Kleywegt & Jones, 1993), Envelope (Rossmann et al., 1992), DM (Cowtan & Main, 1993), Solomon (Abrahams & Leslie, 1996)...
- > May be able to improve envelope after some initial cycles
- of averaging

10/23/2009 Michael S. Chapman (Oregon Health & Science University)

Current Programs do more

- > Rave, DM, Solomon, Squash, Solve/Resolve
- 2nd generation programs
- ➢ Important aspects more & more similar
- > User-friendliness, portability
- Averaging, FT's phase combination all in one program
 Incorporation of...
 - Other density modification, *e.g.* solvent flattening
 - Multiple crystal forms
- Sophisticated envelopes

