

Methods to be covered

> Direct methods - briefly

- Ab initio - skip
- Molecular Replacement
> Isomorphous Replacement
> Multi-wavelength Anomalous Diffraction

Phase determination - Direct Methods

- Statistical interdependence of structure factors
- $P\left(\alpha_{h}\right)=f\left\{\left|F_{h 2}\right|,\left|F_{h 3}\right|, \ldots\right\}$
> Apply constraints
- E.g. atomicity
- Spheres uniform density
- Separated by vacuum
> Nobel Prize
- Hauptman \& Karle
- Applies to "small" molecules
- Salts
- Organic molecules
- Small proteins
- "Shake-N-Bake"
- Hauptman \& Weeks:

Sheldrick

- < 1000 atoms
$>$ Heavy atom "substructures"
- Derivatives
- SeMet

Part 2:
MOLECULAR REPLACEMENT WHEN RELATED STRUCTURE KNOWN

Overview

$>$ Quickest method
$>$ When related "probe" structure is known
$>$ Requirement

- Know how to superimpose probe structure
- On unknown structure
- In a different unit cell
- (Before unknown structure is known)
- How to:
- Orient - 3 angles - "Rotation Function"
- Place - 3 position vector components - "Translation function"
$>$ Method not without its difficulties

How related must the probe structure be?
> No hard \& fast rules - but empirical bottom line > To get an interpretable map

- > 70\% structure needs to be approximated - Atoms say w/in $2 \AA$
$>$ Sometimes can combine probes, sum $\rightarrow>70 \%$
- Difficult to figure orientation / translation
- Methods improving...

Determination of the Orientation

> Patterson synthesis

- $P(x)=\Sigma_{h}\left|F_{h}\right|^{2} \cos 2 \pi(h x)$
- No phases
- Auto-correlation
- Vectors between atoms > Compare
- Vectors w/in molecule
- Not between molecules
> "Self-vectors" shorter
- Patterson depends on molecular orientation

Orientation from Patterson Overlap

> Rotate Probe model
coordinates

- Calculate Patterson
- Assess overlap
> Compare to observed Patterson
> Step over 3 angles
> At which orientations are observed and calculated Pattersons well
correlated?

Patterson vectors that determine orientation
> If consider only peaks
close to origin

- More are self peaks (red)
- Less likely to have spurious solution
> "Integration radius"
> Impossible to
completely separate
- Self vs. cross peaks
\rightarrow Noise in rotation function
- \rightarrow perhaps some spurious solutions
$R([C])=\int_{V} P_{1}(u) P_{0}([C] u) d u$

Care needed with rotation functions
> Most sensitive to...

- Large reflections - $|F|^{2}$
- make sure all large F have been measured
- Higher resolution data - say 3 to $5 \AA$
- Check that RF not sensitive to exact limits
> Very noisy
- Rank according to signal / noise
- Correct solution is often the $5^{\text {th }}$, sometimes the $30^{\text {th }}$ peak.
- Continue structure determination with several solutions - which works out best?

Translation functions

$>$ Position w/in unit cell when orientation known
$>$ Greatest challenge of Molecular Replacement
\rightarrow What position most consistent w/ diffraction data
$>$ Translation function: $T(t)=\int_{V} P_{1,2}(u, t) P(\mathbf{u}) d \mathbf{u}$

- $P_{1,2}$ are Patterson vectors between molecules
related by crystal symmetry
- $P(u)$ is observed Patterson
$>$ Patterson Correlation, $\operatorname{Corr}(\dagger)=$

$$
\sum_{h}\left(F_{0}^{2-}\left\langle F_{0}^{2}\right\rangle\right)\left(F_{c}^{2-}\left\langle F_{c}^{2}\right\rangle\right)
$$

Translation Functions are Challenging
> Patterson functions intrinsically noisy
> Translation functions sensitive to exact orientation

- Slight orientational error \rightarrow
- May miss correct position
\rightarrow Techniques to improve your chances
- Combine with other information
- Packing analysis - molecules overlap?
- Refine orientation - Patterson correlation function

Solving Molecular Replacement
> Two steps: (a) Orientation (RF); Position (TF)
$>$ Several packages that combine them

- Explore several possible RF solutions
- Reduce errors due to differing conventions
> Programs: Phaser (Max. likelihood); AMoRe; GLRF
$>$ Model $\rightarrow \underline{F}_{\text {calcic }}\left(\left|F_{\text {calc }}\right|, \varphi_{\text {calc }}\right)$
- Combine w/ data: $\left(\left|\mathrm{F}_{\text {obs }}\right|, \varphi_{\text {calc }}\right) \rightarrow$ hybrid map
- Remodel \rightarrow better $\varphi_{\text {calc }} \rightarrow$ better map \rightarrow model..
$>$ Success judged by agreement between $F_{\text {calc }} \& F_{\text {obs }}$.
- ... and ability to improve it with refinement
- Expected (new) features in map, e.g. sequence
- Need for caution

Confusing Names

> Uses Heavy Atoms, but not "Heavy Atom Method" > Adds atoms rather than replacing them

- Historically - based on methods where replaced > Isomorphous - protein must remain in same conformation after heavy atoms added
- or almost so

Phase Det. - Isomorphous Replacement

1. Collect "native" data set: $\left|F_{p}\right| A$
2. Attach heavy atom(s) to protein
3. Collect "derivative" data set: $\left|F_{\text {PH }}\right|$
4. Solve heavy atom positions from ($F_{P H}-F_{P}$)

- Like small molecule structure
- Calculate F_{H} (vector)

5. Vector relationship: $F_{P H}=F_{P}+F_{H}$.
6. Triangulation even $w / o \alpha_{\text {PH }}, \alpha_{p}$.
7. Solve for α_{p}.

Why particular reagents may not work
> Conformational change

- Denaturing
- Subtler non-isomorphism
$>$ Binds at too many sites (to determine positions)
$>$ No binding sites - reactive sites occluded
> Buffer interactions
- $\mathrm{PtCl}_{4}{ }^{2-}$, $\mathrm{AuCl}_{4}{ }^{2-}$ react w/ amino "Good" buffers
- Reagent precipitated
- Buffers containing $\mathrm{PO}_{4}, \mathrm{SO}_{4}$ precipitate $\mathrm{Hg}^{+}, \mathrm{Hg}^{+}$, $\mathrm{Pb}{ }^{+}$etc..

Heavy Metals

> Few atoms bound

- Need to be able to solve as small molecule
$>$ Need to be able to detect
- High atomic number - $f^{2}=\sum_{i} Z^{2}$.
- Contribution $\propto Z^{2}$.
$>\mathrm{Hg}, \mathrm{Pt}, \mathrm{Pb}, \mathrm{Au}, \mathrm{U} .$.
- > 200 reagents, e.g.: $\mathrm{K}_{2} \mathrm{PtCl}_{4}, \mathrm{HgAc}_{2}$,
p-chloromurcuribenzoic acid, $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{PbAc}_{2}$
- Try a wide selection

Heavy Metal - Chemistry

> Hg binds covalently to Cys

- Great if works
- Sometimes reduces essential disulfides - Denatures protein
$>$ Covalent binding to 1° amines:
- $\mathrm{K}_{2} \mathrm{PtCl}_{4}, \mathrm{~K}_{2} \mathrm{AuCl}_{4}$.
- Charged interaction also possible, e.g. $\mathrm{K}_{2} \mathrm{AuCl}_{2}$ > Electrostatic binding
- E.g. PbAcz, uranyl acetate \& carboxylates
10/23/2009 Michael 5. Chapmon (Oregon Health \& Science University) 20

10/23/2009 Michael 5. Chapman (Oregon Health \& Science University) 21

Screening tests - eliminate candidates
> Does it precipitate?

- Mother liquor - no need to waste protein!
> Does it react?
- Colored compounds
- Some change color w/ valency e.g. $\operatorname{Pt}(\mathrm{II}) \rightarrow \operatorname{Pt}(\mathrm{IV})$ - E.g. $\mathrm{P}_{2} \mathrm{Cl}_{4}{ }^{2}, \mathrm{AuCl}_{4}{ }^{2}$

Others - color should concentrate in crystal

- Non-colored
- Does overdose crack a crystal?
- No: probably not reacting
- Yes: reacting or osmotic shock?
- Does it change the diffraction pattern?

From heavy atoms to phases... (overview)
> For each reflection...
> Solve for α_{P} by triangulating: $F_{P H}=F_{P}+F_{H}$.
$>$ Need α_{H}, calculated from positions in unit cell.
> Determination of positions

- Difference Fourier if preliminary phases
- Difference Patterson w/o phases

\qquad

How much should the diffraction be changed?
> Maximize heavy atom signal w/o changing protein
$>$ Measure $\Delta \mathrm{F}=\Sigma\left|\mathrm{F}_{\mathrm{PH}}-\mathrm{F}_{\mathrm{P}}\right| / \Sigma \mathrm{F}_{\mathrm{P}}$

- Above 30\% - usually non-isomorphous
- Below 12% - barely detectable
- Note both $F_{\text {PH }}$ \& F_{P} likely have 6\% random error

> Want

- Small number of binding sites (1 to 6)
- Complete reaction at these sites - Full "occupancy"
- Check w/ Patterson or Difference Fourier (later) > Usually need to optimize concentration, soak time 25

Frustrations of Screening

$>$ Can fail at a number of stages
$>$ Final tests require substantial investment of work

- Careful preliminary tests!
> May need to try many compounds
> May need to transfer to more favorable buffer
> Will need ~ three derivatives
- Couple of months \rightarrow a year or two

Meaning of the Patterson

$>P(\mathbf{u})=\int_{u} \rho(\mathbf{x}) \rho(\mathbf{x}-\mathbf{u}) \mathrm{d} \mathbf{x}=\Sigma_{\mathrm{h}} \mid \mathbf{F}_{\mathrm{h}}{ }^{2} \cos 2 \pi(\mathbf{h x})$
$>$ Let $\rho(x)=0$, except at atom positions
$>P(u)$ is zero except when $x \& x-u$ are atoms $>$ Peaks in $P(\mathbf{u})$

- When u is an inter-atomic vector
- Height $=\rho($ atom 1$) \times \rho($ atom 2$)=Z_{1} \times Z_{2}$.
- Number $=\mathrm{N}^{2}, \mathrm{~N}$ at origin
- Blurred according to resolution - overlapped
$>$ Interatomic vectors \rightarrow solve small structure
- Large structure - Patterson too complicated > Difference Patterson $\left|\mathrm{F}_{\text {PH }}{ }^{-} \mathrm{F}_{\mathrm{P}}\right|$ approx heavy atoms

Patterson \rightarrow Atom positions: Harker Sections

- Patterson peaks a.k.a. "vectors"
> Crystal symmetry \rightarrow concentration in planes
> Example 2-fold along b:
- $(x, y, z)=(-x, y,-z) \rightarrow$ vector $=(2 x, 0,2 z)$
- Harker section (u, v, w) $v=0 ; u=2 x ; w=2 z$
> Example 2_{1} along b:
- $(x, y, z)=\left(-x, y+\frac{1}{2},-z\right) \rightarrow$ vector $=\left(2 x, \frac{1}{2}, 2 z\right)$
- Harker section (u,v,w) $v=\frac{1}{2} ; u=2 x ; w=2 z$

1. Search (Harker sections) for peaks
2. Find (x, y, z) consistent $w /$ peaks

- Educated guesswork
- Systematic computational searches

Difference Pattersons Full of Error
>Crude approximation

- Heavy atom vectors: $\Sigma_{\mathrm{h}}\left|\mathrm{F}_{\mathrm{PH}, \mathrm{h}}-\mathrm{F}_{\mathrm{P}, \mathrm{h}}\right|^{2} \cos 2 \pi(\mathrm{hx})$
- "P" for protein; "PH" for protein + heavy atom
- Can only calculate: $\Sigma_{h}\left(\left|F_{P H, h}\right|-\left|F_{P, h}\right|\right)^{2} \cos 2 \pi(h x)$
- Many background peaks
> Small (20\%) difference between 2 exptl values
> Then squaring the difference!
> Very sensitive to
- Errors in intensity data
- Missing reflections
> Some prove intractable

What to do when Patterson insoluble? > Put aside
> Find another derivative
> Use $2^{\text {nd }}$ derivative to calculate approx phases
$>$ Calculate difference Fourier using $1^{\text {st }}$ derivative amplitudes and $2^{\text {nd }}$ derivative phases

- $\rho(\mathbf{x})=1 / V \Sigma_{\mathrm{h}}\left(\left|\mathrm{F}_{\mathrm{PH}, \mathrm{h}}\right|-\left|\mathbf{F}_{\mathrm{P}, \mathrm{h}}\right|\right) \exp \{-2 \pi \mathrm{ih} . \mathbf{u}\}$
- Coefficients are not squared - less error
- N peaks for N sites

Using heavy atom positions

> From Difference Patterson / Fourier

- Calculate F_{H} vector $=\sum f_{h} \exp \{2 \pi$ ih. $x\}$
$>W /$ measured $\left|F_{P}\right| \&\left|F_{P H}\right|$ amplitudes
- Using cosine rule:
- $\left|F_{P H}\right|^{2}=\left|F_{P}\right|^{2}+\left|F_{H}\right|^{2}+$

2 $\left|F_{p}\right|\left|F_{P H}\right| \cos \left(\alpha_{p}-\alpha_{H}\right)$

- $\alpha_{P}=\alpha_{H}+\cos ^{-1}\left\{\left(\left|F_{P H}\right|^{2}=\left|F_{P}\right|^{2}+\left|F_{H}\right|^{2}\right)\right.$ $\left.12\left|F_{P}\right|\left|F_{\text {PH }}\right|\right\}$

Effect of Errors

> Consider small error in $\left|F_{p}\right|$:

- Changes intersection point
- Changes protein phase
> Measure particular $\left|F_{p}\right|$
- "Real" value + random error
- $P\left(\left|F_{p}\right|\right)$ is distribution
- \rightarrow Distribution of α_{ρ}.
- "Phase probability distribution"
> Remember 2 possible phases
- \rightarrow Bi-lobed distribution

Types of Errors

$>\left|F_{P}\right|,\left|F_{P H}\right|$ experimental measurement error
$>\left|F_{H}\right|$ if heavy atom model is incomplete/inaccurate

- Heavy atom refinement methods
- Maximum Likelihood vs. Least-Squares
> Lack of closure, ε
- Errors \rightarrow triangle $F_{P H}=F_{P}+F_{H}$ should not close $>$ Other errors contribute to ε
- Non-isomorphism
- Protein changed
- Derivative not protein + heavy atoms

Use of Phase Probabilities

> Updated as new phase information added
> Modified according to constraints

- Non-crystallographic symmetry
- Solvent flattening, etc.
- Map calculation
- One phase for each reflection
- Which one?

Uncertainty in the Best Phase

> More confident of phase if

- One peak dominates $\mathrm{P}(\alpha)$
- Peak is sharp
> Different reflections may have phases determined $w /$ more or less confidence
$>$ Can we use this information to give maps of minimal error?
> More emphasis to well-determined reflections.
$>$ Weights - a.k.a. "figure of merit"

MIR - Conclusion	
Advantages	Disadvantages
$>$ Prior structure not required	> A lot of work
	- Large random
- Requires only standard laboratory x-ray equipment	errors
- Errors are random not systematic	McPherson Cpts 6 \& 7
> Use other methods when appropriate	
$>$ MIR is Robust method of last resort 10/23/2009 Michael S. Chapman (Oregon Health \& Science University)	

Part 4:
ANOMALOUS DIFFRACTION

- MAD PHASING

Anomalous Diffraction

$>$ SIRAS - A way of resolving the phase ambiguity

- Sometimes
> Multiwavelength Anomalous Diffraction (MAD)
- Powerful new method \rightarrow accurate phases

10/23/2009	Michael 5 . Chapmon (Oregon Health \& Science University)	45

When an Electron is Not Free
> As nucleus becomes larger \& more +ve...
> Electrons increasingly tethered
> Scattering from dipoles w/ natural oscillation frequency v_{n}.

- Compared to a free electron, scattering is

$$
f_{n}=v^{2} /\left\{v^{2}-v_{n}^{2}-i k_{n} v\right\}
$$

- Forced, damped oscillator
- $v=$ frequency of incident radiation
- Changes magnitude
- Note also complex

Phase lag, dependent on damping constant, κ_{n}.

- Phase difference (scattered-incident) > 2π.

Precise Data Needed

> Anomalous scattering is small

- ~ 6\% for Hg atom \& $\mathrm{Cu}_{\mathrm{k} \alpha}$ radiation
- Can increase by changing λ
- Needs synchrotron source w/ tunable wavelength >Precisely measured data to be able to detect anomalous signal

When are Anomalous Effects Significant?
$>f_{n}=v^{2} /\left\{v^{2}-v_{n}^{2}-i \kappa_{n} \nu\right\}$
$>$ Limit: $v \gg v_{n} \rightarrow f_{n}=1$

- Scattering from free electron
$>$ Limit: $v \ll v_{n} \rightarrow f_{n}=0$
- No Scattering
$>$ Significant when $v \approx v_{n}$
- U_{n} are the absorption edges: K, L ...

Two Strategies for Phasing with Anomalous Diffraction

With tunable x-ray source

\rightarrow MAD method
> Collect at 3 wavelengths

- Maximize $|\Delta \mathrm{F}|-\lambda_{1}$
- Maximize f" - λ_{2}
- Far from edge $-\lambda_{3}$
- Treat $F\left(\lambda_{3}\right)$ as ~ native
- No need for another crystal
$>F\left(\lambda_{1}\right), F\left(\lambda_{2}\right)$ like 2
derivatives

With Fixed wavelength $>$ SIRAS / MIRAS
> Collect native + derivative Primary phasing from SIR / MIR
$>$ Collect both $\mathrm{F}(+), \mathrm{F}(-)$
$>$ Differences in $\mathrm{F}_{\mathrm{H}}(+), \mathrm{F}_{\mathrm{H}}(-)$

- Supplementary phase information
- Breaks ambiguity
- (Determines hand)

SIRAS \& MIRAS

> SIRAS

- Modest supplement to SIR phasing
> MIRAS
- Modest supplement to MIR phasing

Multiwavelength Anomalous Diffraction
MAD Phasing

MAD

>Principles exactly the same as SIRAS
> but... Tune λ to maximize the anomalous effects
$>$ Change λ to mimic isomorphous replacement

- MIR: Change protein \& collect diffraction
- MAD: Same protein \& change wavelength
- Protein must contain an anomalous scatterer
- "Derivative" is isomorphous - by definition
- Eliminate major source of error
- MAD can \rightarrow very precise phases

```
    Anomalous Scatterers
Natural atom
Fe proteins etc..
> Isomorphous atom substitution
- Lanthanide for \(\mathrm{Ca}^{++}\), etc.
- Se for \(S\)
- Express in bacteria that require Met.
- Replace Met in media by seleno-Met.
- Expression can be a challenge.
```

> When all else fails:

- Make derivative - solve derivative not native

10/23/2009 Micheel S. Chapman (Oregon Health \& Science University) 61

MAD Algorithms

$>$ Hendrickson \& Smith - deterministic method

- Calculate $F_{A}, \Delta f, f "$ from $1^{\text {st }}$ principles
- Phase determined geometrically
- 2 wavelengths enough (if no exptl. error)
- $3^{\text {rd }} \rightarrow$ Least squares \rightarrow best solution
\rightarrow Pseudo MIR - pretend each λ is a derivative
- Statistics through phase probability distributions
> Now - Maximum likelihood methods
SHARP: Maximum likelihood refinement of MIR / MAD parameters (Bricogne \& Colleagues)
- SOLVE / RESOLVE: Maximum likelihood MAD \rightarrow auto-building (Terwilliger \& Colleagues)

Isomorphism in MAD

> All data from one crystal

- "Native" + "Derivative"
> Data sets are isomorphous by definition
> Eliminate big source of error in phasing
> Surprising how much one can do w/ a little anomalous signal
- If perfectly isomorphous

Phase Determination \rightarrow Phase Refinement
> Phase determination is approximate

- Molecular replacement:
- known model is not unknown structure
- Isomorphous replacement:
- Small differences between $F_{P H}$ \& F_{P}.
- Assumes heavy metals do not change protein structure
$>$ Phases may need refining
> Maps will have much error

Information that can be used

$>$ Partial model
$>$ Constraint that two identical subunits should have same electron density

- When not related by crystallographic symmetry
\rightarrow Map features common to all protein crystals
- Solvent regions flatter
- Expected shape of density
- Histogram of density levels

Density Modification and More
> Averaging, solvent flattening are examples of "Density modification"
> Something gained by merely modifying map

- Symmetry averaging reduces noise
> More gained by requiring phases to be consistent with the constraint

> Consider:
- Fourier transform: F, $\phi \rightarrow$ map
- Inverse transform: map \rightarrow same F, ϕ. (Not doing anything)
- Now Consider:
- Fourier transform: F, $\phi \rightarrow$ map
- Modify map \rightarrow map'(symmetry, solvent flatten)
- Inverse transform: map $\rightarrow F^{\prime}, \phi^{\prime}$ (changed)
- FT again: $F^{\prime}, \phi^{\prime} \rightarrow$ map ${ }^{\prime}$
(But actually, can do lot better)
Th \& \& h
> Expected ϕ to change
> F was observed - probably should not be changing

```
Phase combination
> New Regime:
    - Fourier transform: F, \phi -> map
    - Modify map }->\mathrm{ map'(symmetry, solvent flatten)
    - Inverse transform: map}->\mp@subsup{F}{}{\prime},\mp@subsup{\phi}{}{\prime}\mathrm{ (changed)
    - Discard F'.
    - Use original |F| w/ modified \phi
    - FT: |F|, \phi.. -> map"
        - Fits constraints better than map, but not like map'.
    - Inverse transform again: map" }->\mp@subsup{F}{}{\prime\prime},\mp@subsup{\phi}{}{\prime}
    - Have further improved the phases
> Cycle until no further change in phases
```

```
> Map consistent with:
    - Constraints
        - Symmetry, solvent flattening, partial model...
    - Observed amplitudes
```

 End Point of Phase Refinement
 Phase Refinement by Density
 Modification
 Constraints that are commonly
imposed:
>Solvent flattening / flipping
$>$ (Histogram matching)
>Symmetry averaging
Density modification 1 - Solvent Flattening
> Solvent molecules more motile
- Smeared at high resolution
> Solvent regions should be ~ featureless = "flat".
> Phase errors \rightarrow errors in all parts of map
- Solvent regions may not start flat
- How can we change phases to maximize the
flatness?

Solvent Flattening B.-C. Wang implementation > Determine solvent region in map
$>$ Change density to average
$>$ FT-invert map $\rightarrow\left|F_{\text {map }}\right|, \phi_{\text {map }}$
> Discard $\left|F_{\text {map }}\right|$: Combine $\phi_{\text {map }}$ with $\left|F_{0}\right|, \phi_{\text {experimental }}$
> Calculate a new map

- Flatter, but not flat
$>$ Repeat the process

How to determine solvent region -- Premise > Need to know which areas to flatten.
> Solvent electron density

- Few features
- Some density everywhere
- Low average value
> Protein regions
- Very High where protein atoms
- Lower than solvent between protein atoms
- Average higher than solvent

Determination of Protein-Solvent Boundary				
Wang (1985)		Leslie (1987)		
> User defines "solvent fraction", S. > Locally average density - Weighted average - Smeared over $10 \AA$ radius		> Smearing density is a convolution w/ weighting function.		
		> Scalar product in reciprocal space.		
		> Weighting function is centrosymmetric		
Designate lowest S fraction as solvent		- Convolution is scalar multiplication - simple > Attenuate \|F	's $>$ FT \rightarrow smeared map > Then like Wang (1985)	
10/23/2009 Michael S. Chapman (Oregon Health \& Science University)			79	

Source of the Information - Redundancy!
>Diffraction = continuous molecular transform sampled at lattice points
$>\frac{1}{2}$ information to reconstruct - missing phases
$>2^{\text {nd }}$ crystal:

- Transform sampled @ different pts.
- Information to calculate phases - in principle
- Multiple crystals \approx internal symmetry
- Multiple copies of molecule in crystal a.u.:
- Unit cell bigger \Rightarrow more reflections
- Same information needed to solve unique part

History

> Reciprocal space methods developed by Rossmann, Blow, Crowther, Main et al., 1960's
> Potential realized when a real-space equivalent was formulated (Bricogne, 1976)
> Slow realization - multiple copies advantageous

- 1980's: more structures determined w/ NCS
> 1990's: many determinations w/ multiple
crystals

Averaging Prerequisites

崀Initial phases
> "Envelope" - which part of unit cell to average
> Orientation of the symmetry
$>$ Position (origin) about which to rotate
> Usual methods

- Rotation and Translation functions

The Envelope Challenge

> Requires electron density map
> May start very poor
> Recognizing solvent protein boundary not trivial

- Solvent flattening methods may help
> Distinguishing proteins near guess-work
> Need good enough guess to start
- Structure determination often blocked by poor starting envelope - envelope definition is often the most challenging step in structure determination.

Nomenclature

> Due to central importance of Rotation \& Translation functions, often see reference to

- "Phase refinement by Molecular Replacement"
> Confusing! - Prefer
- "Molecular replacement" for
- use of homologous known structure for phasing
- "Symmetry averaging" for
- Use of symmetry redundancy for phase improvement

Envelope defines regions to average
> Average protein w/ same bit of protein

- Not solvent, some other part of protein...
>General case - define individual protein

Or wrong protein,
perhaps from a different unit cell

Current Programs do more

>Rave, DM, Solomon, Squash, Solve/Resolve

- 2nd generation programs
- Important aspects more \& more similar
> User-friendliness, portability
- Averaging, FT's phase combination all in one program > Incorporation of...
- Other density modification, e.g. solvent flattening

Multiple crystal forms

- Sophisticated envelopes

Power of Symmetry Averaging
> Most powerful type of phase refinement.

- Final maps can be excellent
$>$ Power $\propto \sqrt{ }$ \# equivalents
> Phase Extension
- Generate phases for
reflections that have no phase
- When many equivalents
- Phases for reflections near those already phased
- 1 or 2 lattice units
- Extend very slowly in resolution

Summary

>Phase refinement is often required to get an interpretable map
> Maps are also improved with phases calculated from a preliminary model, but

- $1^{\text {st }}$ have to be able to build a model
- Will consider " $\phi_{\text {calc }}$ " maps later
> Next workshop - building an initial model

